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Abstract
We aimed to investigate the effect of cerebral small vessel disease (SVD) on cholinergic system integrity in mild cognitive 
impairment (MCI) patients. Nucleus basalis of Meynert (NBM) volume and cholinergic pathways integrity was evaluated 
at baseline, 1-, 2-, and 4-year follow-ups in 40 cognitively unimpaired (CU) participants, 29 MCI patients without SVD, 
and 23 MCI patients with SVD. We compared cholinergic markers among three groups and examined their associations 
with SVD burden in MCI patients. We used linear mixed models to assess longitudinal changes in cholinergic markers over 
time among groups. Mediation analysis was employed to investigate the mediating role of cholinergic system degeneration 
between SVD and cognitive impairment. Increased mean diffusivity (MD) in medial and lateral pathways was observed in 
MCI patients with SVD compared to those without SVD and CU participants. Both MCI groups showed decreased NBM 
volume compared to CU participants, while there was no significant difference between the two MCI groups. Longitudinally, 
compared to CU participants, MCI patients with SVD displayed a more rapid change in MD in both pathways, but not in 
NBM volume. Furthermore, SVD burden was associated with cholinergic pathway disruption and its faster rate of change 
in MCI patients. However, mediation analyses showed that cholinergic pathways did not mediate significant indirect effects 
of SVD burden on cognitive impairment. Our findings suggest that SVD could accelerate the degeneration of cholinergic 
pathways in MCI patients. However, they do not provide evidence to support that SVD could contribute to cognitive impair-
ment through cholinergic system injury.
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FODs  Fiber-orientation distributions
GM  Gray matter
LST  Lesion segmentation tool
LPA  Lesion prediction algorithm
MCI  Mild cognitive impairment
MD   Mean diffusivity
MMSE  Mini-mental state examination
MRI  Magnetic resonance imaging
NBM  Nucleus basalis of Meynert
PET  Positron emission tomography
ROIs  Regions of interest
SE-EPI  Spin echo pulse sequence 

echo-planar-imaging
SPM  Statistical parametric mapping
SS3T-CSD  Single-shell, 3-tissue constrained spherical 

deconvolution
SUVR  Standardized uptake value ratio
SVD  Small vessel disease
SVF  Semantic verbal fluency
TE  Echo time
TIV  Total intracranial volume
TMT  Trail making test
TR  Repetition time
WM  White matter
WMH  White matter hyperintensities

Introduction

Alzheimer's disease (AD) is the most common cause of 
dementia in the elderly and involves multiple pathological 
processes. In addition to well-established amyloid accumu-
lation, cerebral small vessel disease (SVD) has also been a 
crucial factor influencing the development of AD [1]. Nota-
bly, the presence of both amyloid and SVD pathologies has 
been suggested to be associated with more severe cognitive 
dysfunction and a faster rate of cognitive decline in patients 
with mild cognitive impairment (MCI) and AD [2–4], as 
well as early conversion from MCI to AD [5, 6]. However, 
the mechanism underlying the effect of SVD on AD progres-
sion remains incompletely understood.

Cholinergic deficits play a critical role in the pathogenesis 
of AD [7, 8]. Early post mortem studies have illustrated that 
patients with AD experience a significant loss of basal fore-
brain (BF) cholinergic neurons, particularly in the nucleus 
basalis of Meynert (NBM) [9, 10]. In vivo imaging studies 
further support the findings that patients with MCI exhibit 
a reduction in NBM volume compared to healthy controls, 
with even more pronounced reductions in AD patients 
[11–13]. Cholinergic deficits in AD not only involved in 
cholinergic NBM neurons but also fibers projecting from 
the NBM to cortical areas. An autopsy study utilizing cho-
linergic markers identified two major cholinergic pathways, 

namely the medial and lateral pathways [14]. Further, recent 
studies have effectively tracked the two cholinergic white 
matter (WM) pathways in vivo using neuroimaging analysis 
techniques [15] and have found that the integrity of these 
pathways is compromised in individuals with subjective 
cognitive decline, MCI and AD, which is associated with 
cognitive decline [16–18].

The relationship between SVD and cholinergic defi-
cits has been previously investigated. In subjects without 
dementia, increased severity of SVD burden is associated 
with lower cortical acetylcholinesterase (AChE) activity 
[19]. Patients with vascular dementia have shown decreased 
acetylcholine levels and reduced AChE activity in cerebro-
spinal fluid (CSF) [20, 21], and cholinergic therapies could 
improve cognition functions [22]. Furthermore, losses of 
cholinergic pathways assessed using the cholinergic path-
ways hyperintensities scale (CHIPS) were associated with 
vascular cognitive dysfunction [23, 24]. However, although 
several studies have demonstrated the associations between 
SVD and some cholinergic markers (e.g., cerebral AChE 
activity [25] and substantia innominate/BF volume [26, 
27]) in AD, these findings are inconsistent and inadequate. 
Whether and how SVD impacts the integrity of the cholin-
ergic NBM and WM pathways in AD progression remains 
to be clarified.

This study aimed to investigate (1) the changes in cho-
linergic system integrity in MCI patients with and without 
SVD, and (2) the potential mediating role of cholinergic 
deficits in the connection between SVD and cognitive 
impairment. We will achieve these objectives through com-
prehensive analyses that combines both cross-sectional and 
longitudinal approaches. Specifically, we focused on two 
well-established cholinergic markers, namely the NBM vol-
ume and mean diffusivity (MD) of WM pathways, which 
have previously been shown to be sensitive to cholinergic 
system damage in AD [17]. We hypothesized that MCI 
patients with SVD would exhibit more severe cholinergic 
damage than those without SVD. Moreover, SVD may lead 
to cognitive impairment by accelerating cholinergic deficits.

Methods

Study participants

All data used in the current study were from the Alzheimer’s 
Disease Neuroimaging Initiative (ADNI) database (http:// 
adni. loni. usc. edu/). This ongoing project was launched in 
2003 to develop clinical, neuropsychological, and neuroim-
aging biomarkers for early disease detection and progression 
monitoring of AD.

ADNI criteria for MCI patients were: (1) subjective 
memory complaints, either self-reported, reported by a study 

http://adni.loni.usc.edu/
http://adni.loni.usc.edu/
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partner, or reported by a clinician; (2) objective memory loss 
defined as scoring below an education adjusted cutoff score 
on delayed recall of the Wechsler Memory Scale-Logical 
Memory; (3) a mini-mental state examination (MMSE) 
score equals to or higher than 24 out of 30; (4) a global 
clinical dementia rating (CDR) score of 0.5; and (5) general 
cognitive and functional performance sufficiently preserved 
so that a diagnosis of dementia could not be made by the 
site physician at the time of screening. ADNI criteria for 
cognitively unimpaired (CU) participants were: (1) no report 
of any cognition complaints; (2) a MMSE score equals to or 
higher than 24 out of 30; and (3) a CDR score of 0.

Group stratification based on baseline Aβ levels 
and SVD severity

The amyloid positron emission tomography (PET) images 
underwent a standardized preprocessing procedure by the 
ADNI-PET Core. The standardized uptake value ratio 
(SUVR) was calculated as the average of the uptake values 
of the frontal, angular/posterior cingulate, lateral parietal, 
and temporal cortices divided by the mean uptake values in 
the cerebellum. As previously described [28], baseline Aβ 
positivity (A +) was defined by a SUVR ≥ 1.11. Following 
the research framework proposed by Jack et al. [29], MCI 
patients with A + were included in our study.

The burden of white matter hyperintensities (WMH) 
was used to reflect SVD severity and was evaluated on 
baseline T2 fluid‐attenuated inversion recovery (FLAIR) 
images according to the Fazekas et al. criteria [30]. Par-
ticipants with moderate/severe WMH burden were labeled 
as V + (indicating vascular brain injury), while those with 
mild WMH burden were labeled as V − . Consequently, MCI 
patients with A + were further categorized into A + V + and 
A + V − groups, while CU participants with A − V − served 
as the control group. In addition, available neuropsychologi-
cal tests and magnetic resonance imaging (MRI) data at 1-, 
2-, and 4-year follow-ups were collected.

Demographics and cognitive assessment

Demographic information was assessed, including age, sex, 
education level, and APOE ε4 status. Participants with one 
or more ε4 alleles were identified as APOE ε4 carriers. To 
address the potential confounding influence of APOE ε2/ε4, 
all analyses will be reexamined after excluding participants 
identified as APOE ε2/ε4 carriers (see Supplementary Mate-
rial 1). Furthermore, vascular risk factors such as hyperten-
sion, hypercholesterolaemia, diabetes, and smoking status 
were evaluated.

All participants underwent comprehensive neuropsycho-
logical tests involving multiple cognitive domains, including 
memory (Auditory Verbal Learning Test [AVLT] total recall 

score for trials 1–5 and 30-min delayed recall), attention 
(Trail Making Test, Part A [TMT-A]), executive function 
(Trail Making Test, Part B [TMT-B]), and language (seman-
tic verbal fluency [SVF]).

MRI acquisition

All participants underwent whole‐brain MRI scans 
using 3.0 T scanners, according to ADNI protocol. The 
sequence parameters of T1-weighted inversion recovery 
spoiled gradient recalled images were as follows: repeti-
tion time (TR) = 6.96 ms, echo time (TE) = 2.8 ms, voxel 
size = 1.01 × 1.01 × 1.2  mm3, matrix size = 256 × 256, and 
flip angle = 11°. Diffusion tensor imaging (DTI) images were 
acquired using spin echo pulse sequence echo-planar-imag-
ing (SE-EPI) with the following parameters: TR = 9000 ms, 
voxel size = 2.7 × 2.7 × 2.7  mm3, matrix size = 256 × 256, 
flip angle = 90°, and the number of slices = 59. Each DTI 
scan consists of 46 separate images: 5 T2-weighted images 
with no diffusion sensitization (b0 images) and 41 dif-
fusion-weighted images (b = 1000  s/mm2). In addition, 
T2 FLAIR data were obtained only at baseline using an 
echo-planar imaging sequence with the following param-
eters: TR = 9000 ms, TE = 90 ms, TI = 2500 ms, number of 
slices = 42, and slice thickness = 5 mm.

Cholinergic WM pathways analysis

The methods for tracking the cholinergic WM pathways 
largely followed the procedure described in previous stud-
ies [15, 31]. This approach comprised five key steps.

Preprocessing DTI data

We used MRtrix3 (http:// www. mrtrix. org) to remove Gibbs 
ringing and correct for eddy-current, head motion, and bias 
field. Then, fiber-orientation distributions (FODs) were 
determined for each participant using Single-Shell, 3-Tis-
sue Constrained Spherical Deconvolution (SS3T-CSD) [32]. 
The 3-tissue response functions were estimated directly from 
the diffusion MRI data itself and then averaged to obtain a 
group average anisotropic single-fiber WM response func-
tion and isotropic gray matter (GM) and CSF response func-
tions using an unsupervised method [33]. Finally, bias field 
correction and intensity normalization in the log-domain 
were performed on the 3-tissue compartments.

Determination of regions of interest masks

Five regions of interest (ROIs) masks for cholinergic trac-
tography—NBM, cingulum, external capsule, brainstem, 
and anterior commissure—were chosen based on the pre-
vious studies [15, 34]. These ROIs were then registered to 

http://www.mrtrix.org
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individual diffusion space using a combination of nonlinear 
SyN registration algorithm [35] in Advanced Normalization 
Tools (ANTs, http:// stnava. github. io/ ANTs/) and FMRIB's 
Linear Image Registration Tool (FLIRT) [36].

Individual tractography

Tractography was performed on all CU participants using 
tckgen in MRtrix. The NBM ROI mask was designated as 
the seed mask, while the brainstem and anterior commis-
sure ROI masks were set as exclusion mask. The cingulum 
and external capsule ROI masks were used to track cholin-
ergic medial and lateral pathways, respectively. Tractogra-
phy parameters: tractography algorithm: iFOD2; number of 
generated streamlines: 10,000; all other parameters, such as 
step size and angle constraints, were set to default values by 
MRtrix. Subsequently, a B0 template was created based on 
all CU participants’ B0 images using the ‘build-template’ 
module in ANTs. Individual cholinergic pathways were then 
registered to the B0 template space. Finally, only voxels that 
appeared in a minimum of 50% of the cases were preserved 
in template creation. The cholinergic WM pathways are 
shown in Fig. 1.

Individual cholinergic pathway

After acquiring the cholinergic pathway templates, the indi-
vidual medial and lateral pathways were warped into their 
respective individual spaces. Manual inspection was con-
ducted to ensure their accuracy in individual space.

Cholinergic pathway integrity evaluation

The average MD index, which has previously been dem-
onstrated to be sensitive to injury of cholinergic pathways 
[15–17], was utilized to characterize the microstructural 
properties of the cholinergic WM pathways.

NBM volumes

The methodology for obtaining the NBM volume involved 
three primary steps.

T1 image segmentation

Utilizing the Longitudinal segmentation pipeline in the 
Computational Anatomy Toolbox (CAT12, http:// dbm. 
neuro. unije na. de/ cat/), all T1 images across different time 
points underwent preprocessing. Specifically, settings opti-
mized for detecting significant changes such as aging or 
developmental effects were selected within the Longitudinal 
model option. Modulated GM/WM segmentations were cho-
sen to compensate for spatial normalization effects. Initially, 
rigid alignment of individual T1 images created an average 
image, subsequently registered to CAT12's default-defined 
standard space. Within this standard space, subject-specific 
tissue probability maps for GM and WM were generated for 
each time point. Total intracranial volume (TIV) was also 
obtained from this segmentation process.

NBM mask

NBM mask, initially acquired in MNI space, was registered 
to CAT12's default-defined standard space. This registra-
tion process involved nonlinear SyN registration algorithm 
in ANTs to align the MNI space T1 images with CAT12’s 
default-defined standard space T1 images. The deformation 
map obtained from this alignment was then applied to the 
NBM mask, resulting in the acquisition of CAT12’s default-
defined standard space NBM mask.

NBM volume calculation

The GM probability map obtained in the first step and the 
NBM mask acquired in the second step were multiplied 
together to calculate the NBM volume for each participant.

Measurement of WMH volume

Quantitative WMH volumes were also measured on base-
line T2 FLAIR images by an automatic segmentation tool 
(Lesion Segmentation Tool, LST) using a lesion prediction 
algorithm (LPA) based on Statistical Parametric Mapping 
software (SPM12, http:// www. fil. ion. ucl. ac. uk/ spm). The 
automatically created WMH images were then manually 
corrected to avoid incorrect segmentation. WMH volumes 
were automatically extracted by LST. For analysis, WMH 

Fig. 1  Cholinergic WM path-
ways. The masks of cholinergic 
medial pathway (A) and lateral 
pathway (B) were displayed, 
respectively

http://stnava.github.io/ANTs/
http://dbm.neuro.unijena.de/cat/
http://dbm.neuro.unijena.de/cat/
http://www.fil.ion.ucl.ac.uk/spm
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volumes were normalized to the TIV and subsequently log-
transformed to meet normal distribution.

Statistical analysis

Statistical analysis was performed using SPSS statistical 
software (version 26; SPSS, Inc., Chicago, IL) and R studio 
(version 4.1.3). Results were considered statistically signifi-
cant at P < 0.05 (two-tailed).

Cross‑sectional comparison among groups

Age, years of education, cognitive measures, cerebral 
Aβ levels, and WMH volume were compared among the 
 CUA−V−,  MCIA+V−, and  MCIA+V+ groups using one-way 
analysis of variance (ANOVA), followed by post hoc tests 
with Bonferroni correction for multiple comparisons. The 
Chi-square test was used for categorical variables, including 
sex, APOE genotype, and vascular risk factors. After adjust-
ing for age, sex, education, and TIV, the NBM volume and 
cholinergic pathways MD were compared between groups 
using ANOVA, followed by pairwise post hoc tests with 
Bonferroni correction.

Cross‑sectional associations between WMH burden 
and cholinergic deficits and the mediation analysis in MCI 
patients

We conducted partial correlation analysis to examine the 
relationship between WMH burden and cholinergic deficits 
in MCI patients, with age, sex, and education as covariates. 
To investigate the potential mediating role of cholinergic 
deficits in the connection between WMH burden and cogni-
tive impairment, we initially conducted partial correlation 
analyses involving the cholinergic system and cognitive 
performance. This step was essential as mediation analysis 
requires the presence of significant associations between 
WMH burden and the cholinergic system, as well as between 
the cholinergic system and cognitive performance. Subse-
quently, upon confirming these significant associations, 
we employed mediation analysis to determine whether 
WMH could potentially contribute to cognitive impairment 
through cholinergic injury in MCI patients using the PRO-
CESS macro v3.5 in SPSS. We performed bias-corrected 
bootstrapping with 5000 replications to estimate the indi-
rect effect. An indirect effect through mediators between 
the independent and dependent variables is significant if 
the 95% confidence interval (CI) does not include zero. In 
this analysis, we considered normalized NBM volume (TIV-
corrected), medial pathway MD, and lateral pathway MD 
as separate mediators, with WMH volume as the independ-
ent variable. Different cognitive domains were successively 

entered as dependent variables. Age, sex, and education 
were included as covariates.

Longitudinal changes in cholinergic system among groups

Linear mixed models were used to examine longitudinal 
changes in cholinergic system. The analyses were performed 
using the ‘lme4’ package R studio [37, 38]. We tested the 
longitudinal changes in cholinergic system among groups. 
The model included age, sex, education, group  (CUA−V− vs. 
 MCIA+V−,  CUA−V− vs.  MCIA+V+,  MCIA+V− vs.  MCIA+V+), 
time (i.e., number of years from baseline), and group × time 
as fixed effects, while time was modeled as a random effect 
(random intercepts and slopes) for each participant. We 
separately analyzed three dependent cholinergic markers 
including normalized NBM volume, medial pathway MD, 
and lateral pathway MD.

Mediating effects of cholinergic changes between WMH 
burden and cognitive changes in MCI patients

To explore the potential mediating role of changes in the 
cholinergic system in the relationship between WMH burden 
and cognitive alterations, we conducted partial correlation 
analyses involving WMH burden and cholinergic changes, 
as well as cholinergic changes and cognitive changes. After 
confirming these significant associations, we used mediation 
analysis to study whether WMH burden contribute to cogni-
tive changes by accelerating cholinergic system degenera-
tion. Baseline WMH burden was considered as independent 
variable. Slopes of normalized NBM volume change, medial 
pathway MD and lateral pathway MD were set as mediators 
separately. Different cognitive domains slopes were succes-
sively entered as dependent variables. The measurement of 
slopes was extracted for each patient using linear mixed-
effects regression with random effects of intercept and linear 
slope (with respect to time). Age, sex, and education were 
included as covariates.

Results

Demographic and clinical data

A total of 40  CUA−V− participants, 29  MCIA+V− patients, 
and 23  MCIA+V+ patients were included. The demo-
graphic characteristics, cognitive performance, cerebral 
Aβ levels, and WMH volume at baseline were summa-
rized in Table 1. The  MCIA+V+ group (77.61 ± 4.70) was 
significantly older than the  CUA−V− group (71.85 ± 6.10, 
P = 0.004) and  MCIA+V− group (72.36 ± 8.25, P = 0.016). 
There were no significant differences in sex and education 
level among groups. The frequency of APOE ε4 carriers 
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was significantly higher in both MCI groups in comparison 
to the  CUA−V− group. Hypertension was more prevalent 
in the  MCIA+V+ group compared to the  MCIA+V− group, 
while there were no significant differences for other risk 
factors. Both MCI groups had lower scores than the 
 CUA−V− group in MMSE  (MCIA+V−: P < 0.001,  MCIA+V+: 
P = 0.041), AVLT trials 1–5  (MCIA+V−: P < 0.001, 
 MCIA+V+: P < 0.001), AVLT delayed recall  (MCIA+V−: 
P < 0.001,  MCIA+V+: P < 0.001), and SVF  (MCIA+V−: 
P = 0.003,  MCIA+V+: P = 0.004). Furthermore, the 
 MCIA+V+ group had lower scores than the  MCIA+V− and 
 CUA−V− groups in TMT-A  (MCIA+V−: P = 0.005,  CUA−V−: 
P < 0.001) and TMT-B  (MCIA+V−: P = 0.009,  CUA−V−: 
P < 0.001).

In addition, detailed information on the longitudinal 
changes of cognitive performance among groups can be 
found in Supplementary Material 2. Briefly, both MCI 
groups exhibited an accelerated longitudinal decline on 
most cognitive measures compared to the  CUA−V− group. 
Moreover, the  MCIA+V+ group further showed faster cog-
nitive decline in TMT-B than the  MCIA+V− group.

Comparison of baseline NBM volume and WM 
pathways MD among groups

After adjusting for age, sex, education, and TIV, both the 
 MCIA+V+ and  MCIA+V− groups showed reduced NBM volume 
compared to the  CUA−V− group at baseline (P < 0.001 for both 
MCI groups), However, there was no significant difference in 
NBM volume between the two MCI groups (Fig. 2A).

The  MCIA+V+ group showed increased MD in the medial 
and lateral pathways compared to the  MCIA+V− group (both 
pathways: P = 0.003) and  CUA−V− group (both pathways: 
P < 0.001) after adjusting for age, sex, education, and TIV. 
There was no significant difference in MD of the two pathways 
between the  MCIA+V− and  CUA−V− groups (Fig. 2B, C).

Baseline associations between WMH burden 
and cholinergic markers as well as mediation 
analysis in MCI patients

As shown in Fig. 3, WMH volume had significant associa-
tions with MD in cholinergic pathways (medial pathway: 

Table 1  Demographics and clinical characteristics at baseline

Values are expressed as mean (standard deviation), number of participants
Aβ amyloid beta; AVLT auditory verbal learning test; CU cognitively unimpaired; MCI mild cognitive impairment; MMSE mini-mental state 
examination; SVF semantic verbal fluency; TIV total intracranial volume; TMT trail making test; WMH white matter hyperintensities
a Compared to  CUA−V− group, P < 0.05
b Compared to  MCIA+V− group, P < 0.05

Characteristics CUA−V− (n = 40) MCIA+V− (n = 29) MCIA+V+ (n = 23) F-value/χ2-value P-value

Demographics
 Age, years 71.85 (6.10) 72.36 (8.25) 77.61 (4.70)ab 6.21 0.003
 Sex (F/M) 19/21 14/15 6/17 3.34 0.188
 Education, years 16.75 (2.64) 15.17 (2.55) 15.74 (3.12) 2.93 0.059
 APOE ε4 carriers, n (%) 10 (25%) 21 (72.4%)a 16 (69.6%)a 19.32  < 0.001

Vascular risk factors, n (%)
 Hypertension 21 (52.5%) 13 (44.8%) 18 (78.3%)b 6.30 0.043
 Hypercholesterolaemia 18 (45.0%) 11 (37.9%) 13 (56.5%) 1.80 0.407
 Diabetes 6 (15.0%) 1 (3.4%) 6 (26.1%) 5.46 0.065
 Current or past smoking 6 (15.0%) 4 (13.8%) 5 (21.7%) 0.68 0.711

Cognitive performance
 MMSE 28.78 (1.67) 27.07 (1.85)a 27.65 (1.56)a 8.93  < 0.001
 AVLT trials 1–5 48.40 (11.11) 30.48 (7.61)a 31.13 (8.87)a 38.357  < 0.001
 AVLT delayed recall 8.15 (4.28) 2.31 (2.70)a 3.61 (3.10)a 25.518  < 0.001
 Log-transformed TMT-A 1.49 (0.17) 1.54 (0.12) 1.69 (0.17)ab 11.46  < 0.001
 Log-transformed TMT-B 1.86 (0.18) 1.95 (0.21) 2.12 (0.21)ab 12.53  < 0.001
 SVF (animal) 20.60 (5.42) 16.24 (4.32)a 16.04 (5.81)a 8.26  < 0.001

Neuroimaging
 Cerebral Aβ levels 1.02 (0.05) 1.38 (0.17)a 1.44 (0.16)a 105.02  < 0.001
 Log-transformed WMH vol-

ume (TIV corrected)
 − 2.76 (0.40)  − 2.65 (0.30)  − 2.08 (0.21)ab 32.11  < 0.001
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r = 0.444, P = 0.001; lateral pathway: r = 0.526, P < 0.001), 
but not with normalized NBM volume (r =  − 0.206, 
P = 0.156). The correlations between cholinergic defi-
cits and cognitive impairment were present in Supple-
mentary Material 3. In the mediation analysis, the lateral 

pathway MD did not act as a mediator for the impact of 
WMH burden on TMT-B (indirect effect = 0.094, 95%CI 
[−0.019, 0.22]), although the total effect of WMH burden 
on TMT-B was significant (total effect = 0.24, P = 0.023).

Fig. 2  Comparison of baseline integrity of NBM and WM pathways 
among groups. The normalized NBM volume (A), medial path-
way MD (B), and lateral pathway MD (C) were compared between 
 CUA−V−,  MCIA+V−, and  MCIA+V+ groups. P-values result from post 

hoc tests with Bonferroni correction for multiple comparisons. P-val-
ues for all comparisons not shown are > 0.05. CU cognitively unim-
paired; MCI mild cognitive impairment; MD mean diffusivity; NBM 
nucleus basalis of Meynert

Fig. 3  Baseline associations between WMH burden and cholinergic 
markers as well as mediation analysis in MCI patients. Scatter plots 
graphs of relationship between: WMH volume and normalized NBM 
volume (A); WMH volume and medial pathway MD (B); WMH vol-
ume and lateral pathway MD (C) in MCI patients. Mediation analy-
sis showed that lateral pathway MD did not mediate the relationship 
between WMH burden and TMT-B (D). a = regression coefficient for 

WMH burden and lateral pathway MD; b = regression coefficient for 
lateral pathway MD and TMT-B, adjusted for the effect of WMH bur-
den; c′ = the direct effect for WMH burden and TMT-B; c = the total 
effect. An indirect effect is significant if the 95% CI does not include 
zero. CI confidence interval; MD  mean diffusivity; NBM nucleus 
basalis of Meynert; TMT-B Trail making test, part B; WMH  white 
matter hyperintensities
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Longitudinal changes in NBM volume and WM 
pathways MD among groups

Normalized NBM volume decreased over time in the three 
groups (P < 0.001). However, there was no significant dif-
ference in the rate of normalized NBM volume change 
between the  MCIA+V+ and  CUA−V− groups (P = 0.141), the 
 MCIA+V− and  CUA−V− groups (P = 0.141), and the  MCIA+V+ 
and  MCIA+V− groups (P = 0.921) (Fig. 4A).

Both MCI groups exhibited an increase in MD of medial 
and lateral pathways over time (both pathways: P < 0.001). 
The  MCIA+V+ group further displayed a faster longitudi-
nal MD increase in both medial and lateral pathways com-
pared to  CUA−V− group (medial pathway: P = 0.003; lateral 
pathway: P = 0.038). In addition, the  MCIA+ V− group also 
showed faster longitudinal change in medial pathway MD 
compared to  CUA−V− group (P = 0.024). However, we did 
not find significant difference in longitudinal change in lat-
eral pathway MD between the  MCIA+V− and  CUA−V− groups 
(P = 0.085), or bilateral pathways MD between the  MCIA+V+ 
and  MCIA+V− groups (medial pathway: P = 0.151; lateral 
pathway: P = 0.316) (Fig. 4B, C). Further details are avail-
able in Supplementary Material 4.

Mediation analysis of longitudinal cholinergic 
system changes between WMH burden 
and cognitive changes in MCI patients

The detailed relationships between WMH burden and lon-
gitudinal changes in cholinergic markers and cognitive per-
formance were present in Supplementary Material 5. In the 
mediation analysis, the change in medial pathway MD did 
not act as a mediator for the impact of WMH burden on 

the changes observed in TMT-A (indirect effect = 0.0015, 
95%CI [−0.0021, 0.0049], Fig. 5A) and TMT-B (indirect 
effect = 0.0053, 95%CI [−0.0004, 0.012], Fig. 5B). Fur-
thermore, the change in lateral pathway MD also did not 
serve as a mediator for the effect of WMH burden on the 
change observed in TMT-B (indirect effect = 0.0034, 95%CI 
[−0.0018, 0.009], Fig. 5C). However, we found that WMH 
burden was significantly correlated with the rate of change 
in both cholinergic pathways. Besides, WMH burden had 
significant total or direct effects on the longitudinal change 
in TMT-A and TMT-B. See details in Fig. 5.

Discussion

We investigated the effect of SVD on cholinergic system 
in MCI patients and its contribution to cognitive impair-
ment through cholinergic degeneration. Our main findings 
are (1) MCI patients with SVD showed disrupted integ-
rity in cholinergic medial and lateral pathways compared 
to those without SVD and CU participants. Furthermore, 
SVD burden was associated with the disruption of cholin-
ergic pathways across all MCI patients. (2) Longitudinally, 
SVD burden could accelerate the degeneration of cholinergic 
pathways. (3) However, we found no differences in baseline 
NBM volume or its rate of change over time between MCI 
patients with and without SVD. (4) Additionally, our study, 
by cross-sectional and longitudinal mediation analysis, did 
not support the role of SVD in cognitive impairment through 
cholinergic system degeneration.

Our findings revealed that MCI patients with SVD had 
reduced integrity of both cholinergic pathways at base-
line compared to those without SVD and CU participants. 

Fig. 4  Longitudinal changes of NBM volume and WM pathways 
integrity. The longitudinal evolutionary trajectories of cholinergic 
markers in the  CUA−V− (blue),  MCIA+V− (yellow), and  MCIA+V+ 
(gray) groups (A–C). The thin lines represent the changes in indi-
vidual cholinergic markers over time, and the corresponding thick 

lines represent the estimated average cholinergic markers changes of 
the three groups. The timepoint on the X-axis refers to the year. CU 
cognitively unimpaired; MCI mild cognitive impairment; MD mean 
diffusivity; NBM nucleus basalis of Meynert



2712 Journal of Neurology (2024) 271:2704–2715

Moreover, their decline in pathway integrity over time was 
faster than that of CU participants. These results suggest that 
SVD not only disrupts the integrity of cholinergic pathways 
in MCI patients, but also accelerates cholinergic degenera-
tion over time. Damaged integrity of cholinergic pathways 
has been observed in subcortical vascular cognitive impair-
ment [39], which supports our results. Moreover, our cross-
sectional and longitudinal correlation analyses showed sig-
nificant associations between increased WMH burden and 
cholinergic pathway disruption. One possible explanation 
is that WM lesions may directly destroy the integrity of 
cholinergic projections, which are mostly unmyelinated, 
and therefore susceptible to WM damage [14]. Our findings 
align with prior research reporting a negative association 
between WMH burden and cholinergic pathways integrity 
in both cognitively normal individuals [15] and patients with 
vascular cognitive impairment [39]. Moreover, several stud-
ies have indicated that degradation of the cholinergic projec-
tions caused by WMH may contributed to cognitive dysfunc-
tion in AD [24, 40]. Interestingly, Cedres et al. [41] further 
demonstrated that WMH burden is a more critical factor 
than AD pathologies such as Aβ42/40 ratio and phosphoryl-
ated tau levels in CSF in contributing to the degeneration of 
cholinergic pathways in cognitively unimpaired individuals. 
Together, these findings emphasize the role of SVD in the 
degeneration of cholinergic WM pathways.

In addition, we observed reduced NBM volume in both 
MCI groups compared to the CU group at baseline. Cho-
linergic degeneration, which includes neuronal loss [9, 10] 
to morphological changes in the NBM, has been exten-
sively documented in patients with MCI, AD [11, 34, 42] 
and mixed AD and vascular pathologies [43], which sup-
ports our findings. However, our study did not find a sig-
nificant difference in baseline NBM volume between MCI 
patients with and without SVD or in its rate of change over 
time. Our correlation analysis also demonstrated no asso-
ciation between NBM volume and WMH burden. Previous 

studies have documented that NBM volume is not reduced in 
patients with vascular cognitive impairment when compared 
to healthy elderly participants [39, 43]. More recently, Kin-
dler et al. further reported no significant correlation between 
CHIPS score and NBM volume in AD patients [27]. How-
ever, only a few studies have shown significant association 
between WMH burden and NBM volume in individuals with 
normal cognition [15] and subtle cognitive impairment [31], 
which could be attributed to the retrograde degeneration of 
the NBM from WMH strategically damaging cholinergic 
projections [44]. A possible explanation for the discrepancy 
could be that the significant association between WMH 
burden and NBM degeneration may be stronger in normal 
cognition and subtle cognitive impairment but weaken or 
disappear when apparent cognitive impairment occurs.

The mediation analyses showed significant total or direct 
effects of SVD burden on attention and executive functions 
across all MCI patients. Our data are in line with previous 
studies that reported significant associations between SVD 
and cognitive decline, particularly in the attention and exec-
utive functions [45, 46]. Unexpectedly, we did not find an 
indirect effect of cholinergic pathway deficits between SVD 
burden and cognitive impairment. A possible explanation 
could due to the small sample size in our study which make 
it difficult to capture the mediating role of cholinergic path-
way between SVD and cognitive changes. Furthermore, it is 
likely that the participants in our study were highly educated. 
Previous research has shown that a higher level of education 
represents greater cognitive reserve, which may attenuate 
the negative impact of SVD on cognition [47]. Additionally, 
cholinergic activity can be upregulated in MCI patients with 
a higher education level, which appears to have a compensa-
tory effect [48, 49]. Therefore, they may have influenced our 
exploration of the relationship between SVD, cholinergic 
system integrity, and cognitive changes.

There are several limitations of our study that should be 
noted. Firstly, participants in the ADNI database are highly 

Fig. 5  Mediation analysis of longitudinal cholinergic changes 
between WMH burden and cognitive changes in MCI patients. Medi-
ation analysis showed that the change in medial pathway MD did 
not mediate the relationship between WMH burden and changes in 
TMT-A (A) and TMT-B (B). In addition, the change in lateral path-
way MD also did not mediate the relationship between WMH burden 
and change in TMT-B (C). a = regression coefficient for WMH bur-

den and cholinergic pathway MD change; b = regression coefficient 
for cholinergic pathway MD change and cognitive change, adjusted 
for the effect of WMH burden; c′ = the direct effect for WMH bur-
den and cognitive change; c = the total effect. An indirect effect is 
significant if the 95% CI does not include zero. MD mean diffusiv-
ity; TMT-A trail making test, part A; TMT-B  trail making test, part B; 
WMH  white matter hyperintensities
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educated, which may introduce selection bias and limit the 
generalizability of our findings. In addition, the relatively 
small sample size was constrained by the requirement for 
complete clinical, MRI, and PET data. Therefore, repeating 
this work in a population-based cohort with a larger sample 
size may provide better insight into the impact of SVD on 
cholinergic system in AD. Secondly, participants were not 
age-matched, with MCI patients with SVD being older than 
other groups. However, we accounted for the age effect in 
our analyses. Thirdly, we used WMH as the SVD index to 
explore the influence of SVD on cholinergic system. Nota-
bly, other components of SVD, such as lacunes, microbleeds, 
and perivascular spaces, may have different etiologies. 
Future studies could assess the contribution of a composite 
SVD index or other components to cholinergic degenera-
tion. Finally, despite employing a longitudinal design, the 
follow-up period was limited to 48 months. Future studies 
with extended follow-up durations are required to explore 
the influence of SVD on cholinergic system changes in AD.

Conclusions

In summary, our findings provide important evidence for 
the influence of SVD on cholinergic system disruptions 
and highlight the value of WM pathways microstructure in 
revealing cholinergic deficits in MCI patients with mixed 
amyloid and vascular pathologies. Future studies require 
large sample sizes and population-based cohorts to explore 
the role of SVD on cognitive impairment through choliner-
gic system degeneration in AD.
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